A scalable geometrical model for musculotendon units
نویسندگان
چکیده
Physics-based simulation of systems such as virtual humans has benefited from recent advances in muscle actuation. However, to be manageable for motion controllers, muscles are usually solely represented by their action line, a polyline that does not include data on the tridimensional geometry of the muscle. This paper focuses on combining, by a controllable enhancement process, a functional and biomechanical model of musculotendon units with its high resolution geometrical counterpart. The method was developed in order to be invariant to spatial and polygonal configurations, and to
منابع مشابه
Musculotendon lengths and moment arms for a three-dimensional upper-extremity model.
Generating muscle-driven forward dynamics simulations of human movement using detailed musculoskeletal models can be computationally expensive. This is due in part to the time required to calculate musculotendon geometry (e.g., musculotendon lengths and moment arms), which is necessary to determine and apply individual musculotendon forces during the simulation. Modeling upper-extremity musculo...
متن کاملSimulation of biceps femoris musculotendon mechanics during the swing phase of sprinting.
INTRODUCTION/PURPOSE Characterization of hamstring mechanics during sprinting is fundamental to understanding musculotendon injury mechanisms. The objective of this study was to use muscle-actuated forward dynamic simulations to investigate musculotendon mechanics of the biceps femoris long head during the swing phase of sprinting. METHODS We used a three-dimensional linked segment model with...
متن کاملModeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg i...
متن کاملAdaptive Remodeling of Achilles Tendon: A Multi-scale Computational Model
While it is known that musculotendon units adapt to their load environments, there is only a limited understanding of tendon adaptation in vivo. Here we develop a computational model of tendon remodeling based on the premise that mechanical damage and tenocyte-mediated tendon damage and repair processes modify the distribution of its collagen fiber lengths. We explain how these processes enable...
متن کاملFlexing computational muscle: modeling and simulation of musculotendon dynamics.
Muscle-driven simulations of human and animal motion are widely used to complement physical experiments for studying movement dynamics. Musculotendon models are an essential component of muscle-driven simulations, yet neither the computational speed nor the biological accuracy of the simulated forces has been adequately evaluated. Here we compare the speed and accuracy of three musculotendon mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Visualization and Computer Animation
دوره 28 شماره
صفحات -
تاریخ انتشار 2017